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The Numerical Computation of Radiation Impedance of Zonal
Arrays on a Hard Prolate Spheriodal Baffle

S. HANISH

Transducer Branch
Sound Division

This report consists of two parts. In the first part the mechanical radiation impedance between "tes-
seral section" sound sources in an acoustically hard prolate spheriodal baffle is analyzed and formulas
derived for calculating the impedance in terms of prolate spheriodal wave functions. The particular
case of the interaction between zonal sound sources is treated in detail. In the second part a complete
numerical study is made of the interaction between eight zones on prolate spheriodal baffle 2.3X long
having a radius a at the equator such that ka ~ 3. The zones have an axial height of X/1O and are spaced
X/10 units apart. Theoretical radiation impedance interaction coefficients are calculated, and tables are
presented of mutual and self impedances of all eight zones. Theoretical acoustic beam patterns are
calculated and plotted for the condition of equal zonal surface velocities.

PART 1 - THE MECHANICAL RADIATION INTERACTION
IMPEDANCE BETWEEN ACOUSTIC SOURCES LOCATED IN
A PROLATE SPHERIODAL BAFFLE

Two quasi-rectangular rigid pistons (i, j) are located on a rigid prolate spheriodal baffle
(Fig. 1) whose semifocal distance is d/2. The spheriodal coordinates (id 7j, p) are related to
Cartesian (x, y, z) coordinates by the coordinate transformation

z

C =CONST

,= CONST

- X

Fig. 1 - Two

rigid pistons (i, j)

spheroidal baffle

quasi-rectangular
on a rigid prolate

NRL Problem S02-07; Project RF 001-03-44-4052. This is an interim report on one phase of the problem; work is continuing. Manu-
script submitted April 8, 1964.
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d
mY= -27(21 172 sin So

d
Z (1)

Let qf (g, 77, p, t) be the velocity potential of the sound field due to rigid body motion of
piston i. For sinusoidal time variation of frequency X we write

(2)

in which j = .\/Zj The space-dependent velocity potential As satisfies the differential equation

v2 ij + k 2
qf, = 0, k = w/c,

iph in a doubly infinite series of the spheriodal eigenfunctions corresponding to

o= 2 E Am.iR (4) (h, e)S... .(h, c).o) 7)sin mcp
Mu ft

in which

h = kd/2

R¶(h g,) = R ) (h, ) -j 2 ) (h, e).

The spheriodal radial functions R(1) and R 2) and the spheroidal angle functions S,,t,, used
here are defined by Flammer (1). We locate the ith piston symmetrically at the origin of the
^° coordinate and assign to the ith piston an azimuthal angular width of 2< i and a meridional
angular width of -1 i:, -j - . The velocity v(-q, Sp) of the ith rigid piston is normal to the surface
5 and has a magnitude u; that is,

IV (- , A) |I = u, when {71 i, 71 -77 i

= 0 elsewhere. (4)

Let Qe be the scale factor of coordinate e. Then

(5a)

so that

IV 0q, (P) I {=e (Qg d Pi){

= - E A [aR (4 )(hh,]
M ital1

We expand
Eq. (3a):

(3a)

and

(3b)

(3c)

(3d)

2

ID i (�, j7, �p, t) = ejwtqji (�, q, p )

Sjnjj(hj -a) COS M�o (5b)We IV 00, �P) II 4=90
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in which

d 2d2 (5c)

We multiply both sides of Eq. (5b) by Spq(h, 'r) cos p'p dq7 dip and integrate between the limits
71 = + 1, - 1 and sp = 0, ff. If p = m and q =$ n, the resultant integrals are identically zero. For

the case p = m and q = n, we find that

-u sin m i j - Smin(h, 71) d-q

A mni= 1(6a)

(2 ) f]e=o (a

in which

r+1

Nmi, = Smn( h, 77)] 2 d71 (6b)

and

E=2, m= 0

E = 1, m 54 0.

The pressure p, of the ith piston is

Pi = jp)I'

or

-jwp2u(-2) sin mipi f;-i, Smn(h 7) d?)

Pi 2/ nEmNmn [aR(4 )(h, 6)1

x R(R4)(h, e) S..(h, q) cos m~p. (7)

The mechanical force F ij induced on the area Ai of the jth piston by the pressure p i is

I A j (8a)

The angular limits of the jth piston are 7j 2 , I 7v and pj, ipj. We find therefore that

Fij =f2 f72 pi(Co, 7, vp)Q,,Qp dqdip (8b)

in which Q77, Qf are scale factors and

(ni ==1 -_I) ~ (8c)
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Substituting Eqs. (8c) and (7) into Eq. (8b) and integrating with respect to sp we find the inter-
action mechanical impedance coefficient Zj (:= F1j/u) to be

-j2hPc(.) sin m~pi[sin mcpj 2 -sin mcpj, ]R ,4,1)(h, ej
Zij E T M2 N [ORt 4 )(h, eo)]

< f 1  2 S ,,(h, -q ) d) fA - '2 I S,1,1 (h, I) dq. (9)

When m - 0 and Ad - r,

sin mcpii m ''° -- 1J. (Il Oa)

Also when m - 0, pj, -2 +7r and cpj, - -, so that

sin mopj 2 -sin mspj,
lim = 2 7r. (I Ob)
m-O

Therefore when the rigid pistons are replaced by integral rings (that is, when m = 0) the inter-
action impedance coefficient between the ith ring and the jth ring is

Zu=-i2ir hpc($) dR [d (h, 6) f s 2So (h, 71) d7r

I d6

X Aj2 V7T.--q Soiljh, -q?) d-qR. (1
7 I

If the (complex) velocities of the ith and jth pistons are Viej 8i, Vje38j respectively, the inter-
action impedance ZIj is found by multiplying the impedance coefficient Zj referred to Vi by
the ratio of velocities; that is

Zjj = Z-j V ei(8 - 8i ). (12)

In some piston arrays, the velocity V normal to the z-axis rather than the velocity v normal
to the spheroidal surface is fixed. Let a be the angle between the two normals at any point on
the ellipsoidal surface. Then for piston i we have

[vi , - ca e

[ V (Y A, so) ]= -Vj 1cos ar II when (13)

= 0 elsewhere.
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Let

2

If the normal to the surface is N, then

|cos al = i Xr=-
aN 2 Q aV--

We equate the normal component of velocity aTPaN with the value
Eq. (13) and find

- 2V (Amni [dRmi(ILh, Smn

-1 m n de

(14a)

(14b)

of the velocity given by

(h, q)cos mop.

Multiplying both sides of Eq. (15) by Spq (h, qr) cos q'p dijdy4 and integrating iq

-1 and q between 0 and ir, we find that

Amni =

-Vi ) eo sin ff&Vj;,i2

(15)

between +1 and

V- 1A Smn (h, 71) dq

(16a)
E Nmn(j) [dM ( 0 1)] -

The pressure pi is therefore

ieopVzij'ro

pi(e, -7, Ep) =

(2
m

sin mqpi

n mNm n

lii'

i7 7l Smn( h, 77) d7n

[dR(4) (h, g

df mm= 0

The z-component of interaction force (Fij) z induced over the area Ai of the jth
ith piston is found to be

(Fij)= fpilcos ajdAj

= ffPi|cos a I (QnQV) d71dqp

in which the scale-factors Qr, Qf are computed from

d

2d= -

Qf2 ~/7~

piston by the

(1 7a)

(1 7b)

(17c)

(17d)

x R(4) ( h, e) Smn (h, 71) cos mq. (16b)
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Inserting Eqs. (5c), (17c), (17d), and (14b) into Eq. (17b), we find

(F = (d)
2); 2:d f Pi( o, A, J d-qdp. (17e)

By performing the indicated integrations we arrive at mutual interaction impedance coefficient

-i (Fij)z

-jfiP(2 do sin m oi(sin meoj 2,-sin mcpj,)

\2

X dR (S,,) ,S ( , 7 )7  fJt2 \/ 2 S.,, (h, - ) dX7 .

E d 1 eo (18)

When m 0 the conditions described by Eqs. (lOa) and (lOb) hold. The interaction mechanical
impedance is no longer the impedance between pistons but the impedance between rings. The
impedance coefficient between rings then reduces to

Z=j j2r P -(It(h, )
iL2 N [dR(,'2(h. 4 ) 1

L d6 ~

7 1i2 arc So.l( he -1 ) drq |' 2F So,, ( h -qX) d71 - (19)
Al Ji]

PART 2 - THE NUMERICAL COMPUTATION OF ZONAL ARRAYS
ON A HARD PROLATE SPHEROIDAL BAFFLE

In Eq. (19) we may write

2/rkd\/dlle2  
=A=A

(2 )2) 0 ai (20)

where
A = zonal reference area (same for each zone)
ai = constant associated with zone i.

If we assume the normal component of velocity V of the jth zone to be equal in magnitude and
phase to the normal component of velocity V of the ith zone, then the interaction mechanical
impedance coefficient Z ij between the ith zone and the jth zone of Eq. (19) reduces to

R(4 )(h, eo)
zij jPC A > Oi - nIhn (21a)

rat +Aot,
Ion = So,, (h cos A~) sing2- d?9. (21b)
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We consider now an array of eight coaxial ring zones symmetrically spaced about the equator
on a prolate spheroidal baffle 2.31X long. Each ring is approximately 0.1X in axial length and
has a maximum radius a such as ka - 3. More precisely if 2L is the length of spheroid defined
by LO = const. with focal distance d/2, and if the height of each zone is Az then (see Fig. 1) we
require that

cosh Lo = 1.100000

kd
h= -= 6.600000

2

ka -3.024

Az = 0.095X

2L = 2.311X

kAz= 0.6.

d_
2= 1.050X

In constructing the mathematical model of the array we divided the spheroid into 15 ring
zones, seven of which were considered hard baffle (i.e., passive) and the remaining eight vibrat-
ing in the breathing mode (ie., active). The zone at the equator (passive) was numbered 1 and
the first active zones above and below the equator were numbered 2, 3 respectively, and so
forth. The extent of each zone is defined by two angles i01 , A2 which are selected in accordance
with the requirements of Eq. (22). A list of all active zones and their angle limits (in radians)
is given in Table 1. Figure 2 shows the zones and spheroidal baffle drawn approximately to scale.

TABLE 1

Definition of the Active Zones

ith 0 62 | 01

Zone (radians) (radians)

14 1.003691 0.902261

10 1.189738 1.098931

6 1.362684 1.277345

2 1.529462 1.446508

3 1.695085 1.612131

7 1.864247 1.778909

11 2.042662 1.951855

15 2.239332 2.137902

We begin our calculations with Eq. (21b). The integrand of Ion contains the spheroidal
angle function Son(h, cos A) which is defined in terms of an infinite series of products of Leg-
endre polynomials Pr(cos A) and spheroidal wave expansion constants dr(hlOn),

so that

So.(h, cos A) = I d'r(hIOn)Pr(cos 9)
r=O,l

Ion = r En) : Pr(cos i) sin 2 0 d .
r=0,l I1

(23a)

(23b)

(22)

7
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Iz

cos t

I 0.619838

,- 0.537193

A-, 0.454548

:\- 0.37 1903

0.289258

-- 0.206613

kAZ = 0.6

ka 3

x = 2sinhg stn u

Z =d2 cosh ocosv

2 1.0

cosh4 = l I

sinh = 0.458182

Fig. 2 - The eight active zones drawn to scale on an (acoustically)

hard prolate spheroidal baffle

The prime over the summation symbol indicates that r may be an even integer only, if n is
even, and an odd integer only, if n is odd. The constants dr(6.6/0n) are listed in the tables
of Stratton, Morse et al. (2) for 0 - n - 8. Our calculations however require 0 - n - 19. To
obtain the wave expansion constants corresponding to these values of n we undertook an
extensive program for the calculation of the eigenvalues (to 12 significant digits) associated
with the wave equation in spheroidal coordinates. Use of these eigenvalues in a three-term
recursion formula in dr (hl/On) (see Ref. 1) served to give numerical ratios of the' expansion
constants also to 12 significant figures. Unique values of d, were finally obtained by adoption
of a suitable normalization (i.e., that found in Morse and Feshbach (3)). When all the neces-
sary constants had been calculated, the integral in Eq. (23b) was programmed for digital com-
putation on the NAREC computer with limits of integration determined from Table 1 above.

We then calculated the radial spheroidal wave functions R(4) (h, DO) by means of the for-
mula

R 14)(h, e) = R ()(h, 0) -jR (2)(h, e.)@.

8

(24a)
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The first term on the right is the radial spheroidal wave function of the first type. It may be
expanded as a sum of spherical Bessel function jr(h h.) multiplied by the spheroidal wave
expansion constants noted in Eq. (23a). One has

R("1(h, e.) = ,(- j)r- n d,(hjOn)j,(hge,). 2b
n = 0,21

The second term on the right of Eq. (24a) is the radial spheroidal wave function of the second
type. It may be expanded as a sum of associated Legendre functions multiplied by spheroidal
wave expansion constants of special type. One has

1 xRo2n)(h, eo) = I' dr(hIlOn)Qm+r(eo)
M l r=-2m7,-2m+l

+ drlp(hl0n)P-n l(so) (24c)
r = 2 m+2,2 m+1 I-

Here K(2) (h) and drjp (hAOn) are special factors which are defined and explained by Flammer
(1) on pages 27 and 33 respectively. In our calculation we computed RM and Rg() with their
derivatives and then formed the calculated Wronskian (= 1/h(2 - 1). Comparison with the
theoretical Wronskian then gave a measure of the precision achieved. Table 2 shows all of the
radial functions actually calculated and used in our problem.

Numerical calculation of the normalization factor Non was carried out using the scheme of
Morse and Feshbach (3), in which

N..= [dr(hIln) ]2(2 2 + 1) (25)

This is a rapidly converging series for r 50.
With the final calculation of No. all pertinent factors appearing in Eq.(21a) were available in

numerical form. The coefficients of self and mutual interaction impedance Zij (read "ith zone
acting on jth zone") were then computed to five significant digits for each of the eight rings.
Table 3 lists all of these coefficients. We note that the mutual impedance coefficients (i =1 j) are
appreciable fractions of the self impedance coefficients (i = J) and that they may have negative
real parts and negative imaginary parts. In Eq. (21a) n was summed from 0 to 19. The real part
converged very rapidly (n = 6). The imaginary part in contrast converged so slowly that in the
author's opinion the entries in Table 3 under "Imaginary" are somewhat in error, perhaps as
much as ±8%. For comparison purposes we note below the self radiation impedance of a ring
equivalent to zone 2, located in an infinite cylindrical (hard) baffle. The applicable formulas
are found in Robey (4):

Z22 = pcA2 [0.24398 + ± 030788], prolate spheroid

Z22 = pcA 2 [0.24780 + j 0.40198], infinite cylinder.

The total mechanical impedance on each zone for equal velocity distribution throughout the
array was found by summing all impedances on a zone, i.e.,

Zi = E Zij.

9
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TABLE 2

Calculated Radial Functions for h = 6.6 and {% = 1.1

n RM A* R(2) A* R' A* R(2)' | A* CalculatedOilO OnI Oil Onf_________ W ronskiant

0 - 0.8394469 - 1 0.2025905 0 - 0.27805589 1 - 0.18844049 1 0.721500722

1 0.2149589 - 1 0.2350539 0 - 0.31141422 1 - 0.4880214 0 0.721500869

2 0.1555883 0 0.2056134 0 - 0.27848106 1 0.9570535 0 0.7215007206

3 0.2767677 0 0.7202851 - 1 - 0.17515040 1 0.2151055 1 0.7215007197

4 0.2887213 0 - 0.1491417 0 - 0.3604599 0 0.26851512 1 0.7215007184

5 0.18672248 0 - 0.3502638 0 0.45719243 0 0.30064016 1 0.72150071735

6 0.8635994 - 1 - 0.5645129 0 0.4985796 0 0.5095488 1 0.7215007146

7 0.3254378 - 1 - 0.1051246 1 0.2874713 0 0.1288411 2 0.721500712

8 0.1055804 - 1 - 0.2490787 1 0.12325483 0 0.3925912 2 0.721500706

9 0.3020672 - 2 - 0.7193551 1 0.4336670 - 1 0.1355791 3 0.7215007002

10 0.7739809 - 3 - 0.2417554 2 0.1310299 - 1 0.5229186 3 0.7215009359

11 0.17970027 - 3 - 0.9193431 2 0.34906099 - 2 0.2229234 4 0.7215008424

12 0.3816147 - 4 - 0.3887662 3 0.8343541 - 3 0.10406635 5 0.7215006457

13 0.7469530 - 5 - 0.1805984 4 0.18121967 - 3 0.5277719 5 0.7215006207

14 0.1356266 - 5 - 0.9131289 4 0.3611265 - 4 0.2888412 6 0.72150056

15 0.2296938 - 6 - 0.4988129 5 0.6653477 - 5 0.1696243 7 0.7215005093

16 0.3645410 - 7 - 0.2926134 6 0.1140531 - 5 0.1063710 8 0.7215003861

17 0.5443908 - 8 - 0.1833930 7 0.1828632 - 6 0.70931009 8 0.7215002836

18 0.7677197 - 9 - 0.1222656 8 0.2754616 - 7 0.5011010 9 0.7215000361

19 0.1025661 -9 - 0.8637945 8 0.3913838 - 8 0.3738318 10 0.72149983

*Exponents of 10.
tThe theoretical Wronskian is 0.7215007215.

Table 4 lists the total impedances for the eight zones and (for comparison) the corresponding
self impedances. We note that the interaction effects increase the radiation resistance by a
factor of approximately 2 for most rings and diminish the radiation reactance from 40% to
90% of their self reactance values.

Total impedances of active zones for the case where fewer than eight rings are in the sphe-
roidal baffle have also been calculated. Table 5 lists the total radiation impedances when only
two, three, or four zones respectively are in the baffle.

The final set of calculations consisted in determining the variation of pressure amplitude
with angle in the far field (i.e., the far-field pressure pattern). We employed here Eq. (16b).
Setting m = 0 and using Ref. 2 to write

e-jkr
lim R(4)(h, g) - j)-fll e

hae-x i kr

we sum all the zonal pressures pi from i = 1 to i = 8. In general the magnitude and phase of
velocity will be different for each zone. Hence we replace Vi by Viej 8i in our sum. Using Eq.
(21b) we found the pressure in the far field to be

10
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TABLE 3
Mutual Impedance Coefficients Z

ZONE j
ZONE i

ZONE 14 ZONE 10 ZONE 6

Zones Real f Imaginary Real | Imaginary Real Imaginary

14 0.22904 0.30244 0.14967 - 0.034830 0.011451 - 0.082616

10 0.16310 - 0.037956 0.23336 0.30683 0.16066 - 0.025709

6 0.013120 - 0.094653 0.16890 - 0.027029 0.24371 0.30871

2 - 0.074086 - 0.049525 0.021453 - 0.097037 0.17317 - 0.024969

3 - 0.046074 0.055893 - 0.070474 - 0.055502 0.020245 - 0.099214

7 0.022587 0.037759 - 0.049434 0.054730 - 0.071888 - 0.054004

11 0.040319 0.0029121 0.016910 0.034661 - 0.047027 0.052057

15 0.0041070 - 0.033709 0.036998 0.0026738 0.019712 0.032957

ZONE 2 ZONE 3 ZONE 7

14 -0.063178 - 0.042233 - 0.039291 0.047663 0.019714 0.032957

10 0.019937 - 0.090177 - 0.065492 - 0.051578 - 0.047021 0.052058

6 0.169150 - 0.024395 0.019780 - 0.096933 - 0.071888 - 0.054004

2 0.24398 0.30788 0.16909 - 0.022733 0.020247 - 0.099215

3 0.16909 - 0.022733 0.24398 0.30788 0.17313 - 0.024968

7 0.019781 - 0.096933 0.16915 - 0.024394 0.24369 0.30870

11 -0.065492 - 0.051579 0.019937 - 0.090176 0.16065 - 0.025711

15 -0.039291 0.047663 -0.063178 - 0.042233 0.011447 - 0.082617

ZONE 11 ZONE 15

14 0.036998 0.026722 0.0041070 - 0.033709

10 0.016910 0.034661 0.040319 0.0029138

6 - 0.04944 0.054729 0.022584 0.037758

2 - 0.070474 - 0.055503 - 0.046074 0.055893

3 0.021453 - 0.097035 - 0.074086 - 0.049525

7 0.16889 - 0.027031 0.013115 - 0.094654

11 0.23336 0.30683 0.16310 - 0.037955

15 0.14967 - 0.034828 0.22904 0.30244

r P (r ) zoz,-jkr (

':- - r (0

{XViejaiIn}Son,(h, cos 0)

Pr(
0

) = E (j)-f i
71 Non [d R(04,) ( h, e:)] =0

(26)

I1I
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TABLE 4
Total Impedances for the Eight Active Zones

Zone Self Impedance* Total Impedance*t
__ _ Zii Zi

14 0.22904 +j 0.30244 0.35212 + ± 0.18316

10 0.23336 + j 0.30684 0.50739 + j 0.18450

6 0.24371 +j 0.30871 0.50999 + j 0.10721

2 0.24398 +j 0.30788 0.45398 +; 0.027494

3 0.24398 +j 0.30788 0.45397 +j 0.027498

7 0.24369 +j 0.30870 0.50996 +± 0.10720

11 0.23336 +j 0.30683 0.50737 +j 0.18450

15 0.22904 +j 0.30244 0.35211 + j 0.18316

*AII impedances are expressed as fractional parts of pCA where A is
the actual area of a zone.

tFor equal zonal velocities.

TABLE 5
Total Impedances for Two, Three,

or Four Active Zones

- Total Impedance*
Zones Present Zj I

Real r Imaginary

14, 10 Z1 4  0.39215 0.26448

Z50  0.38303 0.27201

14, 10, 6 Z14  0.67517 0.25294

Zi0  0.64571 0.33461

Z6  0.81657 0.44298

14, 10, 6, 2 Z14  0.57462 0.26710

Z10  0.58739 0.30195

Z 6  0.48569 0.26732

Z 2  0.50048 0.26898

*Impedances are expressed as fractional parts of pCA, where
A is the actual area of a zone.

in which r, 0 are the spherical coordinates referred to the origin. Since we are interested only
in relative magnitudes of total pressure (= Pr) as a function of angle, we write

P ac IP (0) I1

The beam pattern function K(O) in decibel notation is defined here as

(27)

K (0) = 20 log PrI (8

12

(28)
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Equation (26) is quite involved, and we restricted ourselves for the purposes of this report to
the simple case of equal velocities on all eight rings. The factor Viej 8i was therefore omitted
in all of our computations. The sum n was taken from 0 to 10. Figures 3a and 3b show plots
of the angle spheroidal wave functions So,, (hi, cos 0) vs cos 0 for A = 6.6 which were used in the
computation of Eq. (27). Figure 4a shows a far-field pressure pattern generated by all eight
zones, the pattern drawn to linear scale. Figure 4 b shows the same pattern drawn to decibel
scale. It was decided at this point to draw all subsequent beam patterns to decibel scale. Figure
5a shows the pattern generated by zone 14 alone. Figure 5b shows the patterns generated by
two, three, or four zones located above the equator. Figure 6 shows the far-field pressure
patterns generated by two zones above the equator plus one or two zones below the equator.
Figure 7 shows the far-field pressure patterns due to three zones above the equator plus one,
two, three, or four zones below the equator. Figure 8 shows the far-field pressure patterns
due to four zones above the equator plus one, two, three, or four zones below the equator.
Figure 9 shows the far-field pressure patterns due to an equatorially symmetrical arrangement
of two, four, six, or eight zones.

CONCLUSION

The numerical computation of the radiation impedance and radiation patterns of zonal trans-
ducers on a hard prolate spheroidal baffle is clearly a very involved task. Still remaining to be
conquered is the precision calculation of radial spheroidal wave functions for 5% not much
greater than unity. We plan to repeat this calculation with altered spheroid eccentricity on a
digital computer of much larger memory. However, the results of the exercise represented by
the above work are useful in their own right in that they represent our first efforts to under-
stand the radiation impedance of zonal arrays on baffles of other than planar or spherical
shape.
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Fig. 4b - Far-field pressure pattern on
a logarithmic scale for eight zones
moving with equal velocities
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Fig. 5b - Far-field pressure patterns
due to two, three, and four zones above
the equator, all moving with equal
velocities
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Fig. 9 - Far-field pressure patterns due to two, four, six, or eight
equatorially symmetrical zones, all moving with equal velocities
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